Skill Analytics Examples
Comprehensive examples and scenarios for using skill analytics to optimize performance and track effectiveness.
Overview
The skill analytics system provides deep insights into skill usage, effectiveness, ROI, and optimization opportunities. This guide demonstrates practical examples for leveraging analytics to improve your agent ecosystem.
Key Analytics Features:
- Effectiveness scoring (0-100 scale)
- ROI calculations (cost savings, token efficiency)
- Trending analysis (7/30/90 day periods)
- Correlation discovery (frequently co-activated skills)
- Usage recommendations
- Export capabilities (JSON, CSV, text)
Quick Start Examples
Example 1: View All Skill Metrics
claude-ctx skills metrics
# Output:
# Skill Metrics Summary
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
#
# Skill Act. Tokens Success Last Used
# ─────────────────────────────────────────────────────────────────────
# api-design-patterns 42 105,200 95.2% 2025-10-17
# microservices-patterns 38 97,600 92.1% 2025-10-17
# kubernetes-deployment-patterns 27 68,400 89.6% 2025-10-16
# python-testing-patterns 23 45,600 91.3% 2025-10-17
# event-driven-architecture 19 64,600 88.4% 2025-10-15
#
# Total Skills: 18
# Total Activations: 247
# Total Tokens Saved: 652,800
# Estimated Cost Savings: $1.96
Example 2: View Specific Skill Metrics
claude-ctx skills metrics api-design-patterns
# Output:
# Skill: api-design-patterns
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
#
# Usage Statistics:
# Activation Count: 42
# Total Tokens Saved: 105,200
# Avg Tokens/Use: 2,505
# Success Rate: 95.2%
# Last Activated: 2025-10-17 14:23:15 UTC
#
# Performance Metrics:
# Effectiveness Score: 87.3/100
# Cost Saved: $0.3156
# Cost per Activation: $0.0075
# Efficiency Ratio: 4.2x
#
# Activation Trends:
# Last 7 days: 12 activations
# Last 30 days: 42 activations
# Last 90 days: 42 activations
Example 3: Generate Comprehensive Report
claude-ctx skills report --format text
# Output:
# ════════════════════════════════════════════════════════════════════════════════
# COMPREHENSIVE ANALYTICS REPORT
# Generated: 2025-10-17 15:30:00 UTC
# ════════════════════════════════════════════════════════════════════════════════
#
# EXECUTIVE SUMMARY
# ────────────────────────────────────────────────────────────────────────────────
# Total Skills: 18
# Total Activations: 247
# Total Tokens Saved: 652,800
# Total Cost Saved: $1.9584
#
# TOP PERFORMING SKILLS (by Effectiveness)
# ────────────────────────────────────────────────────────────────────────────────
# 1. api-design-patterns - Score: 87.3/100, Cost Saved: $0.3156
# 2. microservices-patterns - Score: 84.7/100, Cost Saved: $0.2928
# 3. kubernetes-deployment-patterns - Score: 82.1/100, Cost Saved: $0.2052
# ...
Analytics Use Cases
Use Case 1: Identify High-Value Skills
Goal: Find skills that provide maximum value to prioritize for improvement.
# Method 1: Use effectiveness metric
claude-ctx skills analytics --metric effectiveness
# Output:
# Effectiveness Score
# ══════════════════════════════════════════════════════════════════════
# api-design-patterns ████████████████████████████████████ 87.3
# microservices-patterns ██████████████████████████████████ 84.7
# kubernetes-deployment-patterns ████████████████████████████████ 82.1
# python-testing-patterns ████████████████████████████ 75.4
# event-driven-architecture ██████████████████████████ 73.8
# ...
# Method 2: Use ROI metric
claude-ctx skills analytics --metric roi
# Output shows skills ranked by cost savings and efficiency
Analysis:
- Skills with effectiveness >80 are high performers
- Focus improvement efforts on mid-range (60-80) skills
- Investigate skills <60 for potential issues
Use Case 2: Track Skill Adoption
Goal: Monitor how new skills are being adopted over time.
# View trending skills over last 30 days
claude-ctx skills trending --days 30
# Output:
# Trending Skills (Last 30 Days)
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
#
# Skill Uses Tokens Trend
# ─────────────────────────────────────────────────────────────────────
# python-testing-patterns 23 45,600 ↑↑↑ (New)
# react-performance-optimization 18 40,500 ↑↑
# kubernetes-security-policies 15 35,250 ↑
# terraform-best-practices 12 27,600 →
# owasp-top-10 8 25,600 →
#
# ↑↑↑ Rapidly growing ↑↑ Growing ↑ Increasing → Stable ↓ Declining
Insights:
- Newly released skills show adoption rate
- Identify skills gaining traction
- Spot declining usage (potential deprecation candidates)
Use Case 3: Optimize Token Usage
Goal: Identify opportunities to reduce token consumption.
# View skills by token usage
claude-ctx skills analytics --metric tokens
# Output:
# Tokens Saved
# ══════════════════════════════════════════════════════════════════════
# api-design-patterns ████████████████████████████ 105,200
# microservices-patterns █████████████████████████ 97,600
# kubernetes-deployment-patterns █████████████████ 68,400
# event-driven-architecture ████████████████ 64,600
# ...
# Calculate total efficiency
claude-ctx skills report --format json | jq '.summary.total_tokens_saved'
# Output: 652800
Analysis:
- High token counts indicate heavily-used skills
- Efficiency ratio shows token savings vs. load cost
- Optimize skills with high activations but low efficiency
Use Case 4: Discover Skill Correlations
Goal: Find skills that are frequently used together to create composite skills.
# Generate correlation matrix
claude-ctx skills analytics --metric correlations
# Output:
# Skill Correlations
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
#
# api-design-patterns frequently activated with:
# - microservices-patterns (correlation: 0.82)
# - database-design-patterns (correlation: 0.71)
# - event-driven-architecture (correlation: 0.65)
#
# kubernetes-deployment-patterns frequently activated with:
# - helm-chart-patterns (correlation: 0.89)
# - kubernetes-security-policies (correlation: 0.76)
# - gitops-workflows (correlation: 0.68)
Action Items:
- Consider creating composite skills for high correlations (>0.75)
- Example: “backend-api-design” combining api-design + microservices
- Example: “k8s-deployment-suite” combining k8s patterns
Use Case 5: Monitor Success Rates
Goal: Identify skills with low success rates that need improvement.
# View success rates
claude-ctx skills analytics --metric success_rate
# Output:
# Success Rate (%)
# ══════════════════════════════════════════════════════════════════════
# api-design-patterns ███████████████████████████████ 95.2
# python-testing-patterns ██████████████████████████████ 91.3
# microservices-patterns █████████████████████████████ 92.1
# event-driven-architecture ████████████████████████████ 88.4
# terraform-best-practices ██████████████████ 58.3 ⚠
# ...
# Get recommendations
claude-ctx skills report --format text | grep -A 5 "RECOMMENDATIONS"
# Output:
# RECOMMENDATIONS
# ────────────────────────────────────────────────────────────────────────
# 1. Review 'terraform-best-practices' - low success rate (58.3%).
# May need updates or refinement.
# 2. Consider using 'kubernetes-security-policies' more often
# (effectiveness: 82.5/100, only 15 uses)
Analysis:
- Success rate <70% indicates potential issues
- Review skill content for clarity
- Check if activation triggers are too broad
Advanced Analytics Scenarios
Scenario 1: A/B Testing Skill Versions
Setup: Testing api-design-patterns v1.2.0 vs v2.0.0
# Track metrics for both versions
claude-ctx skills metrics api-design-patterns@1.2.0
claude-ctx skills metrics api-design-patterns@2.0.0
# Compare effectiveness
# v1.2.0: Effectiveness 84.2/100, Success Rate: 92.1%
# v2.0.0: Effectiveness 87.3/100, Success Rate: 95.2%
# Decision: v2.0.0 shows improvement, proceed with full rollout
Scenario 2: ROI Analysis for Skill Investment
Goal: Determine if creating new skills is worthwhile.
# Calculate total ROI
claude-ctx skills report --format json | \
jq '.summary | {
total_skills,
total_activations,
total_cost_saved,
avg_cost_per_skill: (.total_cost_saved / .total_skills),
cost_per_activation: (.total_cost_saved / .total_activations)
}'
# Output:
# {
# "total_skills": 18,
# "total_activations": 247,
# "total_cost_saved": 1.9584,
# "avg_cost_per_skill": 0.1088,
# "cost_per_activation": 0.0079
# }
Analysis:
- Average $0.11 saved per skill
- $0.0079 saved per activation
- Over 1000 activations/month = ~$8/month savings
- ROI positive after 3 months of development time
Scenario 3: Skill Lifecycle Management
Goal: Identify skills at different lifecycle stages.
# Export detailed analytics
claude-ctx skills report --format json > analytics.json
# Analyze lifecycle stages
cat analytics.json | jq -r '.skills | to_entries[] |
select(.value.basic_metrics.activation_count < 5) |
"\(.key) - New/Underutilized (only \(.value.basic_metrics.activation_count) uses)"'
# Output:
# security-testing-patterns - New/Underutilized (only 3 uses)
# threat-modeling-techniques - New/Underutilized (only 2 uses)
# Find stale skills (not used in 30+ days)
cat analytics.json | jq -r '.skills | to_entries[] |
select(.value.trends."30_days" == 0) |
"\(.key) - Stale (no uses in 30 days)"'
Lifecycle Actions:
- New (<5 uses): Promote through documentation and examples
- Growing (increasing trend): Monitor and support
- Mature (stable high usage): Maintain and optimize
- Declining (decreasing trend): Investigate causes
- Stale (0 uses in 30 days): Consider deprecation
Scenario 4: Cost-Benefit Analysis for Skill Optimization
Goal: Prioritize which skills to optimize for maximum impact.
# Calculate optimization priority score
claude-ctx skills report --format json | \
jq -r '.skills | to_entries[] |
{
skill: .key,
activations: .value.basic_metrics.activation_count,
effectiveness: .value.effectiveness_score,
potential_impact: (.value.basic_metrics.activation_count * (100 - .value.effectiveness_score))
} |
select(.potential_impact > 100) |
"\(.skill): Impact Score = \(.potential_impact | round)"' | \
sort -t= -k2 -nr
# Output (sorted by impact):
# terraform-best-practices: Impact Score = 501
# event-driven-architecture: Impact Score = 498
# kubernetes-security-policies: Impact Score = 267
# ...
Priority Formula:
Impact Score = Activations × (100 - Effectiveness)
High score = High usage + Room for improvement
Actions:
- Optimize skills with highest impact scores first
- Focus on improving effectiveness through:
- Better examples
- Clearer explanations
- Updated patterns
- Fixed errors
Export and Integration Examples
Example 1: Export to CSV for Spreadsheet Analysis
# Export all metrics to CSV
claude-ctx skills report --format csv
# Output file: ~/.claude/.metrics/exports/analytics_20251017_153000.csv
# Import into Excel/Google Sheets for custom analysis
CSV Structure:
Skill Name,Activation Count,Total Tokens Saved,Avg Tokens,Success Rate,Last Activated,Cost Saved ($),Effectiveness Score
api-design-patterns,42,105200,2505,92.10%,2025-10-17 14:23:15,$0.3156,87.30
microservices-patterns,38,97600,2568,92.10%,2025-10-17 13:45:22,$0.2928,84.70
...
Example 2: JSON Export for Programmatic Analysis
# Export to JSON
claude-ctx skills report --format json > analytics.json
# Example: Find skills with effectiveness > 85
cat analytics.json | jq -r '
.skills |
to_entries[] |
select(.value.effectiveness_score > 85) |
"\(.key): \(.value.effectiveness_score)"
'
# Output:
# api-design-patterns: 87.3
# microservices-patterns: 84.7
Example 3: Integration with Monitoring Systems
# Create metrics endpoint for Prometheus/Grafana
cat << 'EOF' > /tmp/skill_metrics.sh
#!/bin/bash
# Generate Prometheus metrics from skill analytics
claude-ctx skills report --format json | jq -r '
.skills | to_entries[] |
"# TYPE skill_activations gauge\n" +
"skill_activations{skill=\"\(.key)\"} \(.value.basic_metrics.activation_count)\n" +
"# TYPE skill_effectiveness gauge\n" +
"skill_effectiveness{skill=\"\(.key)\"} \(.value.effectiveness_score)\n" +
"# TYPE skill_cost_saved gauge\n" +
"skill_cost_saved{skill=\"\(.key)\"} \(.value.roi.cost_saved)"
'
EOF
chmod +x /tmp/skill_metrics.sh
# Run and collect metrics
/tmp/skill_metrics.sh > /var/lib/prometheus/node_exporter/skill_metrics.prom
Example 4: Daily Analytics Email Report
# Create cron job for daily email report
cat << 'EOF' > /usr/local/bin/skill-analytics-report
#!/bin/bash
# Daily skill analytics report
REPORT_FILE="/tmp/skill_report_$(date +%Y%m%d).txt"
claude-ctx skills report --format text > "$REPORT_FILE"
# Email report
mail -s "Daily Skill Analytics Report - $(date +%Y-%m-%d)" \
user@example.com < "$REPORT_FILE"
# Cleanup
rm "$REPORT_FILE"
EOF
chmod +x /usr/local/bin/skill-analytics-report
# Add to crontab (daily at 8 AM)
# 0 8 * * * /usr/local/bin/skill-analytics-report
Visualization Examples
Example 1: ASCII Bar Charts in Terminal
# Visualize activation counts
claude-ctx skills analytics --metric activations
# Output:
# Skill Activations
# ══════════════════════════════════════════════════════════════════════
# api-design-patterns ██████████████████████████████████ 42
# microservices-patterns ████████████████████████████████ 38
# kubernetes-deployment-patterns ████████████████████ 27
# python-testing-patterns ████████████████ 23
# event-driven-architecture █████████████ 19
# kubernetes-security-policies ██████████ 15
# react-performance-optimization ████████ 12
# terraform-best-practices ██████ 9
# ...
Example 2: Trending Visualization
# Show 7-day trends
claude-ctx skills trending --days 7
# Output with trend indicators:
# Trending Skills (Last 7 Days)
# ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
# api-design-patterns ▁▂▃▅▆▇█ 12 activations [+40%]
# python-testing-patterns ▁▁▂▄▅▇█ 8 activations [+60%]
# microservices-patterns ▃▄▅▅▆▆█ 10 activations [+25%]
# event-driven-architecture ▂▃▃▄▄▄▅ 5 activations [+15%]
#
# Legend: ▁ Low → █ High
Troubleshooting Analytics
Issue 1: No Metrics Available
claude-ctx skills metrics
# Output:
# No metrics available. Use skills to generate analytics.
# Cause: Skills haven't been activated yet
# Solution: Activate agents that use skills, or wait for natural usage
Issue 2: Metrics Reset Accidentally
# Check if metrics were recently reset
ls -la ~/.claude/.metrics/skills/
# Restore from backup if available
cp ~/.claude/.metrics/skills/metrics.json.backup \
~/.claude/.metrics/skills/metrics.json
Issue 3: Incomplete Activation Data
# Validate metrics file
claude-ctx skills metrics --validate
# Output shows any corrupted or missing data
# Rebuild metrics from activation logs if needed
Best Practices
For Regular Monitoring
- Weekly Review
claude-ctx skills trending --days 7 claude-ctx skills analytics --metric effectiveness
- Monthly Analysis
claude-ctx skills report --format text > monthly_report.txt # Review and act on recommendations
- Quarterly Deep Dive
claude-ctx skills report --format csv # Import into spreadsheet for detailed analysis # Plan skill improvements for next quarter
For Skill Development
- Track New Skills
- Monitor adoption over first 30 days
- Target: 10+ activations in first month
- Effectiveness target: >70 by end of month
- Measure Impact
- Calculate tokens saved per activation
- Track success rate trends
- Gather user feedback
- Iterate Based on Data
- Low success rate? → Improve clarity
- Low usage? → Better activation triggers
- High correlation? → Consider combining skills
See Also
- Skill Versioning README - Version management
- Phase 4 Summary - Complete Phase 4 overview
- Skills Guide - General skills documentation
- Architecture - System architecture details